1st INIOAS Training Course on Ocean Remote Sensing, 2023

17-21 Jun 2023 | Iranian National Institute for Oceanography and Atmospheric Science | Tehran, IRAN

https://www.inio.ac.ir/ORSA

Fundamentals of Ocean Remote Sensing

Masoud Moradi

Iranian National Institute for Oceanography and Atmospheric Science

moradi_msd@yahoo.com

https://www.inio.ac.ir

Objective

Provide an overview of aquatic optics, the remote sensing of water targets, and NASA Earth observation resources available for aquatic applications

Remote Sensing of Aquatic Environments

Advantages

- Synoptic coverage
- Temporal frequency needed to capture dynamic aquatic processes
- Observations of remote ocean locations, infrequently accessed by sea-based platforms
- Historical data for studies of trends

Disadvantages

- Optically complex conditions in aquatic environment
- Interference from the bottom
- Dynamic water quality changes
- Limited number of water quality parameters
- Collection of ground-truth data required

How Light Interacts with Water

Defining Remote Sensing Reflectance (Rrs) – or 'Ocean Color'

$$\operatorname{Rrs}(\lambda, 0^+) \cong C \frac{b_b(\lambda)}{a(\lambda) + b_b(\lambda)}$$

- Inherent Optical Properties a = absorption by... phytoplankton (ph) non-algal particles (nap) colored dissolved organic matter (CDOM) water (w)
- *b* = scattering in forward (f) and backward (b) directions

How Light Interacts with Water

Defining Remote Sensing Reflectance (Rrs) – or 'Ocean Color'

$$\operatorname{Rrs}(\lambda,0^{+}) \cong C \frac{b_{b}(\lambda)}{a(\lambda) + b_{b}(\lambda)} = \frac{L_{w}(\lambda)}{E_{d}(\lambda,0^{+})}$$

Inherent Optical Properties a = absorption b = scattering

Apparent Optical Properties L_w = water leaving radiance L_u = upwelling radiance E_d = downwelling irradiance R_{rs} = remote sensing (rs) reflectance

Inherent Optical Properties (IOPs) and the 'Color' of Water

Light absorption (*a*) by photoplankton (ph),

non-algal particles (nap), water (w), and

colored dissolved organic matter (CDOM)

a = aph + anap + aCDOM + aw

Light scattering (*b*) by particles in forward (*b*f) and backward (*b*b) direction

 $b = b\mathbf{f} + b\mathbf{b}$

Inherent Optical Properties (IOPs) and the 'Color' of Water

Inherent Optical Properties (IOPs) and the 'Color' of Water

Inherent Optical Properties (IOPs) and the 'Color' of Water

- The typical human eye has color detecting receptors that sense light at:
 - 420-440 nm 'blue'
 - o 534-555 nm 'green'
 - o 564-580 nm 'red'
- Water with high chlorophyll content looks green because it reflects strongly in the green part of the spectrum

Apparent Optical Properties (AOPs) and the 'Color' of Water

$$\operatorname{Rrs}(\lambda,0^{+}) \cong C \frac{b_{b}(\lambda)}{a(\lambda) + b_{b}(\lambda)} = \frac{L_{w}(\lambda)}{E_{d}(\lambda,0^{+})}$$

1st INIOAS Training Course on Ocean Remote Sensing | 17 – 21 Jun 2023

- R_{rs} (Θ, ϕ, λ): remote sensing reflectance
- $L_w(\Theta, \phi, \lambda)$: water leaving radiance
- $E_d(0+,\lambda)$: downwelling irradiance
- θ: solar zenith angle
- φ: solar azimuth angle
- λ : wavelength

Calculation of the remote sensing reflectance of waterbodies. This equation relates the ratio of the water leaving radiance and the downwelling irradiance (*Lw* $(\theta, \varphi, \lambda)$ and *Ed* $(0+,\lambda)$) to the remote sensing reflectance (*R*rs $(\theta, \varphi, \lambda)$).

Apparent Optical Properties (AOPs) and the 'Color' of Water

- What is the color and brightness of the ocean?
- How does sunlight penetrate the ocean?
- How does the angular distribution of light vary in the ocean?
- Depend on the directional structure of the ambient light field (i.e., on the radiance)
- Depend on the absorption and scattering properties of the water body (via the radiance)
- Display enough regular features and stability to be useful for describing a water body

A good AOP depends weakly on the external environment (sky condition, surface waves) and strongly on the water IOPs

RADIATIVE TRANSFER EQUATION RELATES THE IOPS TO THE AOPS

Reflected Solar Radiation (~color of water)

- Measured by satellite sensors
- Used to derive the properties of optically active water constituents

- Suspended Sediments
- Algae
- Colored Dissolved Organic Matter
- Detrital Organic Matter
- Submerged or floating vegetation

• Oil

Emitted Thermal Radiation

Used to derive the surface temperature of water bodies

Atmospheric Correction

 $L_{t}(\lambda) = L_{r}(\lambda) + L_{a}(\lambda) + L_{ra}(\lambda) + T(\lambda,\theta)L_{g}(\lambda) + t(\lambda,\theta)L_{wc}(\lambda) + t(\lambda,\theta)L_{wc}(\lambda)$

>90%

<10%

How In Situ and Satellite Observations Roughly Correspond

In Situ	Satellite
Water Temperature	sea Surface Temperature (SST)
Colored Dissolved Organic Matter (CDOM)	Absorption by CDOM (adg_443_giop)
Suspended Solids – Turbidity	Diffuse attenuation of light at 490 nm (Kd_490)
Water Clarity	Chlorophyll-a, Normalized Fluorescence Line Height (nFLH)
Cyanobacteria	📥 Cyanobacteria Index (CI)
Algal Pigments	Euphotic Zone Depth (Z _{eu})
	Experimental Phytoplankton Functional Type Algorithms

Chlorophyll-a from Remote Sensing Reflectance (Rrs)

Rrs at Different Chlorophyll-a Concentrations

1st INIOAS Training Course on Ocean Remote Sensing | 17 – 21 Jun 2023

Chlorophyll-a Estimates

Estimations are a function of the ratios of Rrs values

What Can We Observe from Space?

Observation	Application
Chlorophyll-a	Phytoplankton biomass, primary productivity, biogeochemical cycling
Water Turbidity	Water quality, human and ecosystem health
Colored Dissolved Organic Matter (CDOM)	Water quality, biogeochemical cycling, human and ecosystem health
Sea Surface Temperature (SST)	Currents, primary productivity, climate studies, biogeochemistry, temperature flux
Surface winds	Currents, mixing, air-sea flux of gases
Salinity	Mixing, air-sea flux of gases, geostrophic currents, salt flux

Satellite	Sensor	Parameter
Landsat Series (7/1972 - present)	 Thematic Mapper (TM) Enhanced Thematic Mapper (ETM+) Operational Land Imager (OLI) 	Spectral Reflectance
Terra (12/1999 - present)	Moderate Resolution Imaging Spectroradiometer (MODIS)	 Spectral Reflectance Chlorophyll-a Concentration Temperature
Aqua (5/2002 - present)		 Colored Dissolved Organic Matter (CDOM) Turbidity Euphotic Depth
Terra (12/1999 – present)	Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)	 Spectral Reflectance Temperature

Satellite	Sensor	Parameter
National Polar Partnership (NPP) (11/2011-present)	Visible Infrared Imaging Radiometer Suite (VIIRS)	 Spectral Reflectance Chlorophyll Concentration
International Space Station	Hyperspectral Imager for the Coastal Ocean (HICO) (2009 – 2014)	 Spectral Radiance Spectral Remote Sensing Reflectance
Plankton, Aerosols, Clouds, ocean Ecosystems (PACE) (proposed for 2022 or 2023)	Ocean Color Instrument	 Spectral Reflectance Optional Polarimeter being considered

Landsat Satellites and Sensors

- Near-polar orbit
- 10 a.m. equator crossing time
- Global coverage
- July 1972 present
- 16 day revisit time
 - Sensors:
 - MSS
 - TM
 - ETM+
 - OLI
 - TIRS

Landsat-8 Operational Land Imager (OLI)

- Flying on-board Landsat 8 (Landsat Data Continuity Mission LDCM) polar orbiting satellite
- Spatial Coverage & Resolution:
 - Global, Swath 185 km
 - Spatial Resolution: 15 m, 30 m
- Temporal Coverage & Resolution:
 - February 11, 2013 present
 - 16 day revisit time
- Spectral Bands
 - 9 bands (major bands include blue-green,
 - red, near IR, shortwave and thermal IR, panchromatic)

http://landsat.usgs.gov/landsat8.php

http://landsat.gsfc.nasa.gov/

Terra and Aqua

Terra

- Polar orbit, 10:30 a.m. equator crossing time
- Global Coverage
- December 18, 1999 present
 - 1-2 observations per day
- Sensors:
 - ASTER, CERES, MISR, MODIS, MOPITT

Aqua

- Polar orbit, 1:30 p.m. equator crossing time
- Global Coverage
- May 4, 2002 present
 - 1-2 observations per day
- Sensors:
 - AIRS, AMSU, CERES, MODIS, AMSR-E

http://terra.nasa.gov/

http://aqua.nasa.gov/

MODerate Resolution Imaging Spectroradiometer (MODIS)

- On board Terra and Aqua
- Designed for land, atmosphere, ocean, and cryosphere observations
- Spatial Coverage and Resolution:
 - Global, Swath: 2,330 km
- Spatial Resolution Varies: 250 m, 500 m,
 - 1 km
- Temporal Coverage and Resolution:
 - 2000 present
 - 2 times per day

http://modis.gsfc.nasa.gov

Spectral Bands

- 36 bands (red, blue, IR, NIR, MIR)
 - Bands 1-2: 250 m
 - Bands 3-7: 500 m
 - Bands 8-16: 1000 m

National Polar Partnership (NPP)

- Polar orbit
- 1:30 p.m. equator crossing time
- Global coverage
- November 21, 2011 present
- 1-2 observations per day
- Sensors:
 - VIIRS
 - ATMS
 - CrlS
 - OMPS
 - CERCES

Visible Infrared Imaging Radiometer Suite (VIIRS)

- Flying on-board NPP, polar-orbiting satellite
- Designed to collect measurements of clouds, aerosols, ocean color, surface temperature, fires, and albedo
- Spatial Coverage and Resolution:
- Global, swath width: 3,040 km
- Spatial resolution: 375 m 750 m
- Temporal Coverage
- October 2011 present
- -2 times per day
- Spectral Bands
- 15 bands (major bands include visible, red, blue, green, short, middle, and long-wave IR)
- Ocean Color Bands 1-7: 0.402 0.682 μm
- Sea Surface Temperature Bands 12-13: 3.660 4.128 μm

http://npp.gsfc.nasa.gov/viirs.html

http://www.nasa.gov/mission_pages/NPP

Plankton, Aerosol, Clouds, Ocean Ecosystem (PACE)

- Polar orbiting, 2-day revisit
- High spectral resolution
- 1 km ground sample distance
- Optional polarimeter being considered for cloud and aerosol study and to aid in atmospheric correction
- Anticipated launch 2022

http://pace.gsfc.nasa.gov/

Accessing NASA Satellite Data

NASA Worldview

- Interactive web-based tool for browsing satellite imagery
- Imagery is generally available within four hours of observation
- Daily imagery from May 2012 to present
- Data can be downloaded
- Image output in JPEG, PNG, GeoTIFF, and KML formats

https://worldview.earthdata.nasa.gov/

INIOAS Mapview

(Worldview Heritage)

https://www.inio.ac.ir/mapview

Accessing NASA Satellite Data

NASA OceanColor Web – Data Access

- Level 1 & 2 Browser
- Level 3 Browser
- Direct Data Access
- Data File Search
- SeaBASS Field Data

Minbo: X 🔮 Over: X) 🔮 Data X 🐨 Giov: X 🔄 Natic X 😫 Oce: X 📕 Land: X 📓 HICC X 📓 HICC X 🔥 NAS/ X 🖞 www. X 🖞 facui X 🖞 2015 X 📧 Wint: X 🚺 She
← → C fi 🗋 oceancolor.gsfc.nasa.gov/cms/dataaccess
🗄 Apps ★ Bookmarks 🚞 Personal 📄 Search 🚞 Research Tools 📄 Python 🚞 ARSET 📄 Ocean Carbon 📄 Proposal Info 📄 News
Data Access
The Ocean Biology Processing Group (OBPG) serves as the Distributed Active Archive Center (DAAC) for all Ocean Biology (OB) data produced or collected under NASA's Earth Observing System Data and Information System (EOSDIS). This website thus serves as the primary data access portal to the NASA OB.DAAC. The links below provide a variety of methods to access the holdings of the OB.DAAC, including visual browsers that enable point-and-click access by data levels and direct access for bulk download. In agreement with partner organizations, some data access requires user registration to enable better tracking of usage metrics.
The data management plan describes the acquisition, generation, management, archive and distribution of science data products generated by the Ocean Data Processing System (ODPS). For a detailed description of science data products, data flows, supported sensors, and data availability, archiving and distribution, please refer to the plan document.
Data Access Tools
Level 1 & 2 Browser - visual browse, download and data order access to all supported satellite data for Level-1 and Level-2 scenes at observed geographic scale and temporal granularity including cross satellite and <i>in situ</i> data search capabilities.
Level 3 Browser - visual access to global composites at various spatial and temporal scales.
Direct Data Access - direct access to all available data through http protocols suitable for bulk download.
Data File Search - direct access via filename search, including support for wildcard search on partail filenames.
SeaBASS Field Data - community archive of field data relevant to ocean color research, algorithm development, and validation.
Other Descurres Links to portners that also distribute OP DAAC products or other products derived from OP DAAC holdings 2014_OnePagers_Worpdf V2015355083600.L2_Snc A2015355083600.L2_Snc A2015355083600.L2_Lnc A2015355083600.L2_Snc A2015355083600.L2_Snc

http://oceancolor.gsfc.nasa.gov/cms/dataaccess

Accessing NASA Satellite Data

NASA OceanColor Web – Level 1 & 2 Browser

http://oceancolor.gsfc.nasa.gov/cgi/browse.pl

Accessing Satellite Data

Other Data Access Tools

- NOAA CoastWatch
- <u>http://coastwatch.noaa.gov/</u>
- NASA Giovanni
- http://giovanni.gsfc.nasa.gov/giovanni/
- USGS Earth Explorer
- <u>http://earthexplorer.usgs.gov/</u>
- ESA Ocean Data Lab
- <u>http://</u>ovl.oceandatalab.com

NASA Satellite Data Processing Tools

NASA OceanColor Web

- OceanColor Web is supported by the Ocean Biology Processing Group (OBPG) at NASA Goddard
- OBPG's duties include collection, processing, calibration, validation, archive, and distribution of ocean-related data products from a large number of satellite missions

NASA Satellite Data Processing Tools

SeaWiFS Data Analysis System (SeaDAS)

- Image analysis package for the processing, display, analysis, & quality control of ocean color data
- Originally developed for SeaWiFS, but supports most U.S. and international ocean color missions
- Online tutorials, help pages, and an active user community in the Ocean Color Forum
- Attentive & friendly support team based at NASA Goddard

http://seadas.gsfc.nasa.gov/

SNAP

The Sentinel Application Platform (SNAP) is a common architecture for all Sentinel Toolboxes. The software is developed by Brockmann Consult, Skywatch, Sensar and C-S.

The SNAP architecture is ideal for Earth observation (EO) processing and analysis due to the following technological innovations: *extensibility*, *portability*, *modular rich client platform*, *generic EO data abstraction*, *tiled memory management*, and a *graph processing framework*.

SNAP and the individual Sentinel Toolboxes support numerous sensors other than Sentinel sensors.

https://step.esa.int/main/download/snap-download/

Thank You