1st INIOAS Training Course on Ocean Remote Sensing, 2023

17-21 Jun 2023 | Iranian National Institute for Oceanography and Atmospheric Science | Tehran, IRAN

https://www.inio.ac.ir/ORSA

Sea Surface Temperature from Space

Masoud Moradi

Iranian National Institute for Oceanography and Atmospheric Science

moradi_msd@yahoo.com

https://www.inio.ac.ir

Outlines

Why Measure SST from Space?

How do we measure SST from Space?

What can we find by measuring SST from Space?

Why measure SST?

- SST influences atmospheric circulation
 - Atmospheric Model boundary condition
- SST influences density and circulation of oceans
 - Operational oceanography
- SST changes can impact ocean biogeochemistry
 - Impact on fishing
- SST is an indicator of climate change
 - Improving seasonal prediction

Produced by the Met Office. © Crown copyright 2014

Why measure SST?

Benjamin Franklin and Timothy Folger-chart of North Atlantic Currents -1770

The evolving marine surface temperature observing system

- The quantity, quality and location of observations over time depends on:
- Technology
- Platforms from sailing ships to drifting buoys and satellites
- Civil engineering –the Suez and Panama Canals
- Conflict and economics Wars, available platforms, budgets and priorities
- High quality observations require committed observers/analysts 1st INIOAS Training Course on Ocean Remote Sensing | 17 – 21 Jun 2023

What is SST?

SST is a variable function of time and space, determined by integrated fluxes (including insolation), turbulent mixing, and advection (including upwelling).

"SST" depends on how and where measured:

- Heat flux between ocean and atmosphere leads to a skin layer at the ocean surface
- Absorption of insolation can lead to surface gradients, especially in low winds

Schematic Temperature Profiles

We need two things:

- A high-performance radiometer in Space
- An effective Atmospheric Correction

Atmospheric interactions with radiation

E for sea water is about 0.99 so the water-leaving signal is almost the black body radiation.

Thermal emission is approximately Lambertian, but it may be affected by surface foam and films. Reflectance is $(1 - \varepsilon)$ which is very small, so solar reflection is negligible at 11 microns.

Thermal emission by the atmosphere is the greatest source of atmospheric noise.

Atmospheric effects

Earth emitted spectra overlaid on Planck function envelopes

High resolution atmospheric absorption spectrum and comparative blackbody curves.

Overview of satellite SSTs

Infra-red observations

- Spatial resolution: 1 to 10 km
- Single pixel precision: 0.15 to 0.5 °C
- Accuracy (bias): <0.1 °C to few tenths
- Limitations: cloud cover
- Temporal resolution per sensor (not accounting for clouds): sub-hourly (geo), ~ twice-daily (polar)
- Linear Radiometric Sensitivity

Since 1981

Passive microwave observations

Spatial resolution: 50 to 100 km

Single pixel precision: 0.5 °C

Accuracy (bias): few tenths

Limitations: rain, 50 km margin around land and ice, radio frequency interference

Temporal resolution per sensor (not accounting for contaminants): ~ twice daily

High Radiometric Sensitivity (T5–T15)

Since 1997

Copernicus Sentinel 3: SLSTR

The first Sea and Land Surface Temperature Radiometer (SLSTR) was launched on Sentinel 3A on 16thFebruary 2016.

S3B launched on 26 April 2018

Dual-view self-calibrating radiometer following the **Copernicus Sentinel 3: SLSTR**

Products

<u>RBT: This product provides TOA radiance and brightness temperatures.</u> <u>Available to all via ODA (FTP), EUMETCAST (DVB), CODA (http) and Data Centre (Archive)</u>

<u>WCT: This product provides sea surface temperature for all offered retrieval algorithms.</u> <u>Only available to Cal/Val users via ODA (FTP) and Data Centre (Archive)</u>

<u>WST: This product provides the best SST at each SLSTR location in GHRSST L2P format.</u> Available to all via ODA (FTP), EUMETCAST (DVB), CODA (http) and Data Centre (Archive)

CLOUD MASKING

Example of the 1 km imagery, with SST thermal features and atmospheric effects

Cloud Detection –very important!

29.

Effect of Aerosols on SST

Split window SST equation

$$SST = T_{11} + m(T_{11} - T_{12}) + c$$

Landsat 8

SST = BT10 + (2.946*(BT10 - BT11)) - 0.038

BT10 is the brightness temperature value (°C) Band 10 BT11 is the brightness temperature value (°C) Band 11

SST Retrieval

 $a_0 + \sum_{n} a_n BT_n$

Copernicus Sentinel 3 SST

SST Retrievals by radiative transfer modelling of the form:

where n is the number of channels For SLSTR:

2 channels during day

3 during night

 $3.7 \ \mu m$ not used during day owing to solar contamination so there are four SST retrievals in total

Copernicus Sentinel-3A SLSTR SST 20160501

SST Retrieval

SLSTR SST retrieval

SST Retrieval

Platforms for measuring SST

Platforms for measuring SST

NASA Standard SST Products

SST R2016.0.0 all pixels no quality mask

SST R2016.0.1 good quality

https://oceancolor.gsfc.nasa.gov/atbd/sst/

Thank You